Project Description

This project plans to revitalize existing infrastructure to allow for water quality treatment, groundwater recharge, and flood management through a series of natural treatment systems, possibly including: infiltration basins, treatment wetlands, bioretention basins, etc. The abandoned sewer ponds are located adjacent to Boulder Creek, which is a salmonid stream and receives significant runoff from areas considered high priority for trash and pollution control. Water will be diverted from Boulder Creek just after it crosses under the I-5 freeway and flow through the treatment system before flowing back into Boulder Creek. The upper basin will be expanded and include a pretreatment area while the lower basin will retain its current footprint. Vegetation, walking paths, and interpretive signage will be incorporated.

Potential Site Constraints:
The basin area should be inspected prior to finalizing the project design to confirm no protected species are present. Also necessary ecological instream flows within Boulder Creek along the project location should be confirmed to assist with the design of the project. Numerous permits/agency coordination may be need to implement the project (RWQCB, CDFW, Army Corps, County Flood Control, Caltrans, etc). A site survey should be conducted to confirm local elevations, infiltration rate, and groundwater elevations.

Example Natural Treatment System in Construction

Former Sewer Ponds
Natural Treatment System
Project Concept
City of Redding
Stormwater Resource Plan

Geosyntec consultants

Santa Barbara
April 2018

Figure 1
Project Benefits
All benefits are expressed as an average annual estimate based on historical modeling.

Overall Multi-Benefit Score
Highest possible score is a 5

Water Quality:
Pollutant load reductions from drainage area
- TSS (lbs): 260,000
- NO3 (lbs): 2,100
- Dissolved Cu (lbs): 29
- Fecal Coliform (MPN): 1.26x10^5

Environmental Enhancements: Restored vegetation will include native species increasing habitat for animals of interest.

Flood Management: 920 acre-feet (38%) of the annual runoff volume and 89% of the volume generated from an 85th percentile 24-hr storm will be captured and slowly released back into Boulder Creek, likely reducing the frequency and intensity of flood events downstream.

Community Enhancements: This project is located along the proposed Boulder Creek Trail. Signage to educate the public about the project’s multiple benefits, and native vegetation and landscaping will improve the aesthetics of the parcel while providing recreational opportunities.

Water Supply: 260 acre-feet will be recharged annually, which is equivalent to the supply for 640 households.

Volume Capture Analysis

<table>
<thead>
<tr>
<th>85th Percentile, 24-hr Storm</th>
<th>Average Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation (in)</td>
<td>0.91</td>
</tr>
<tr>
<td>Runoff Volume (ac-ft)</td>
<td>59</td>
</tr>
<tr>
<td>Percent of Runoff Volume Captured (%)</td>
<td>89</td>
</tr>
<tr>
<td>Total Volume Captured (ac-ft)</td>
<td>53</td>
</tr>
</tbody>
</table>

Legend
- Waterbody
- BMP Footprint
- Storm Drain
- Parcel Boundary
- Flow Diversion
- Direction of Flow

Project Design Information
- BMP Type: Natural Treatment System
- Total Project Footprint: 13 acres (includes 3.3 acres pretreatment)
- Depth: 3-9 ft (includes 1 ft freeboard)
- Storage Volume: 41 ac-ft
- Assumed Infiltration Rate: 0.32 in/hr
- Stormwater Source: Boulder Creek

Former Sewer Ponds
Natural Treatment System
Project Concept
City of Redding
Stormwater Resource Plan

Geosyntec consultants

Santa Barbara
April 2018

Note: Proposed project is conceptual and subject to change based on future feasibility assessment, funding availability, and/or other information.
Project Description

This project plans to improve water quality, reduce flows in Linden Ditch, and recharge groundwater by building an offline infiltration system adjacent to the current flow path. Water will be diverted from Linden Ditch approximately where it meets Linden Avenue and directed into the elongated infiltration basin before flowing back into Linden Ditch upstream of West Street. The basin will be located exclusively on city owned parcels and include a pretreatment area. Vegetation, walking paths, and interpretive signage will be incorporated.

Potential Site Constraints:
Vegetation and animals in the basin area should be assessed by a qualified biologist prior to finalizing the project design to confirm no protected species are present. Additional permitting may be required for vegetation removal and constructing a diversion from the creek (RWQCB, CDFW, Army Corps, County Flood Control, etc.). A site survey should be conducted to confirm local elevations and infiltration rate.

Location of Proposed Infiltration System

Legend
- Waterbody
- Storm Drain
- Project Drainage Area
- Project Footprint
- Parcel Boundary
- City

Project Drainage Area

- Education: 7.7%
- Industrial: 0.5%
- Multi-Family: 2.8%
- Residential: 0.2%
- Single-Family: 13.8%

Project Overview

- Parcel Ownership: City of Redding
- APN: 26 city owned parcels
- Soil Type: Hydrologic Soil Group A
- Watershed: Churn Creek-Sacramento River
- Receiving Water: Linden Ditch
- Groundwater Basin: Anderson

Total Area: 260 Acres (23% Impervious)

Note: Proposed project is conceptual and subject to change based on future feasibility assessment, funding availability, and/or other information.

Linden Ditch Infiltration System Project Concept

City of Redding
Stormwater Resource Plan

Geosyntec consultants

Santa Barbara
April 2018
Project Benefits

All benefits are expressed as an average annual estimate based on historical long-term modeling.

Overall Multi-Benefit Score

Highest possible score is a 5

Water Quality:
Pollutant load reductions from drainage area

Environmental Enhancements: Infiltrated water will enhance the greenspace and promote nearby vegetation, increasing the habitat value. Existing invasive species will be removed.

Flood Management: 170 acre-feet (88%) of the average annual runoff volume will be removed from flowing through the concrete channelized portion of Linden Ditch which runs through the city. All of the volume generated from an 85th percentile 24-hr storm will be captured and infiltrated.

Community Enhancements: Signage to educate the public about the project's multiple benefits, and native vegetation and landscaping will improve the aesthetics of the parcel.

Water Supply: 110 acre-feet will be recharged annually, which is equivalent to the supply for 270 households.

Volume Capture Analysis

Legend

Waterbody BMP Footprint
Storm Drain Parcel Boundary
Flow Diversion Direction of Flow

Project Design Information

BMP Type Infiltration System
Total Project Footprint 1.7 acres (includes 0.43 acre pretreatment)
Depth 7 ft (including 1 ft freeboard)
Storage Volume 7.6 ac-ft
Assumed Infiltration Rate 1.5 in/hr
Stormwater Source Linden Ditch

Note: Proposed project is conceptual and subject to change based on future feasibility assessment, funding availability, and/or other information.

Linden Ditch
Infiltration System Project Concept
City of Redding
Stormwater Resource Plan

Santa Barbara April 2018

Figure 4
Project Description

This project plans to improve water quality in Mary Lake by enhancing the existing wet detention basin above Mary Lake to allow for increased water quality treatment and storage capacity. The enhancements may include reconfiguration of the flow path, increased berm height at the downstream end, sediment removal, and native habitat restoration. Flow into Mary Lake will be controlled by adding an adjustable weir or orifice at the low point of the upper basin. A storage tank is also proposed adjacent to the upper basin to capture peak flows from winter storms for release during the dry months to maintain lake levels and reduce eutrophication. Natural treatment systems will be constructed at the western and eastern sides of Mary Lake to treat additional runoff from the surrounding community. Dredging of Mary Lake will support increased capacity and removal of legacy nutrient-rich sediments.

Potential Site Constraints:
Vegetation and animals in the basin area should be assessed by a qualified biologist prior to finalizing the project design to confirm whether protected species are present. A site survey should be conducted to confirm local elevations. Additionally, numerous permits may be needed to implement this project (RWQCB, CDFW, Army Corps, County Flood Control, etc).

Location of Existing Wet Detention Basin

Mary Lake
Lake Restoration Project Concept
City of Redding
Stormwater Resource Plan
Geosyntec consultants
Santa Barbara April 2018
Project Benefits

All benefits are expressed as an average annual estimate based on historical modeling.

Overall Multi-Benefit Score
Highest possible score is a 5

Water Quality:
- TSS (lbs): 80,000
- N03 (lbs): 440
- Dissolved Cu (lbs): 2.9
- Fecal Coliform (MPN): 2.5E+13

Environmental Enhancements: Restored vegetation will replace invasive species with native species increasing habitat for animals of interest. Additional water supplied and removal of legacy nutrients will help reduce eutrophication.

Flood Management: 190 acre-feet (73%) of the average annual runoff volume and all of the volume generated from an 85th percentile 24-hr storm will be captured and slowly released into Mary Lake before entering Jenny Creek.

Community Enhancements: Signage to educate the public about the project’s multiple benefits, and native vegetation and landscaping will improve the aesthetics of the parcel.

Water Supply: The storage tank and the adjustable weir in the upper wet detention basin are designed to capture and store 8.0 acre-feet for supplying Lake Mary during the summer months, offsetting potable water currently used for this purpose. Additionally, approximately 54 acre-feet will be recharged annually, which may help maintain lake levels through interflow.

Volume Capture Analysis

<table>
<thead>
<tr>
<th>Precipitation (in)</th>
<th>85th Percentile, 24-hr Storm</th>
<th>Long-Term Average Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.91</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>Runoff Volume (ac-ft)</td>
<td>6.4</td>
<td>265</td>
</tr>
<tr>
<td>Percent of Runoff Volume Captured (%)</td>
<td>100</td>
<td>73</td>
</tr>
<tr>
<td>Total Volume Captured (ac-ft)</td>
<td>6.4</td>
<td>190</td>
</tr>
</tbody>
</table>

Project Design Information

- **BMP Type:** Wet Basin Natural Treatment Systems
- **Total Project Footprint:** 3.6 acres (includes 0.19 acre pretreatment)
- **Depth (inc. 1 ft freeboard):** 3-5.4 ft
- **Storage Volume:** 16 ac-ft
- **Assumed Infiltration Rate:** 0.32 in/hr
- **Stormwater Source:** 36 and 24 inch storm drains owned by City of Redding
- **Storage Tank:** 0.50 acres
- **Flood Control:** 9 ft
- **Storage Volume:** 4.0 ac-ft
- **Assumed Infiltration Rate:** N/A
- **Stormwater Source:** Wet Basin

Legend

- Waterbody
- Lake Restoration
- Storm Drain
- Natural Treatment System
- Storage Tank
- Parcel Boundary
- Direction of Flow

(Note: Proposed project is conceptual and subject to change based on future feasibility assessment, funding availability, and/or other information.)

Mary Lake

Lake Restoration Project Concept

City of Redding
Stormwater Resource Plan

 sudahutilconsultants

Santa Barbara | April 2018

Figure 6
Project Description

This project plans to turn the alley between Market and Pine Street in downtown Redding into a green pedestrian corridor by replacing the existing surface with permeable pavement and rain gardens with an underdrain system. The stormwater will be collected from the busy area near Eureka Way via the existing storm drains and surface runoff. Permeable pavement and rain gardens will reduce the amount of ponding in the alley and provide water quality treatment by allowing the stormwater runoff to percolate into the underdrain system. Community enhancements may also include murals, design of pavers/ground treatments, wayfinding, etc.

Potential Site Constraints:
Business owners on either side of the alley should be coordinated with during planning and construction stages since they alley provides access to some parking areas. Percolation testing should be conducted to confirm assumed infiltration rates and a site survey to confirm elevations and evaluate subsurface utilities that may need to be relocated.

Location of Proposed Green Street

Note: Proposed project is conceptual and subject to change based on future feasibility assessment, funding availability, and/or other information.
Project Benefits

All benefits are expressed as an average annual estimate based on historical modeling.

Overall Multi-Benefit Score
Highest possible score is a 5

Water Quality:
- TSS (lbs): Reduced
 - Remaining
 - Contributed
- NO3 (lbs): Reduced
 - Remaining
 - Contributed
- Dissolved Cu (lbs): Reduced
 - Remaining
 - Contributed
- Fecal Coliform (MPN): Reduced
 - Remaining
 - Contributed

Environmental Enhancements:
The urban greening will create opportunities for the planting of native vegetation and habitat for pollinators and other species of interest.

Flood Management: 5.6 acre-feet (64%) of the average annual runoff volume will be removed annually from the stormdrain system. About half of the volume generated from an 85th percentile 24-hr storm will be captured and infiltrated.

Community Enhancements: Signage to educate the public about the project's multiple benefits, and native vegetation and landscaping will improve the aesthetics of the alley.

Water Supply: 2.1 acre-feet will be recharged annually, which is equivalent to the supply for 5 households.

Volume Capture Analysis

<table>
<thead>
<tr>
<th>85th Percentile, 24-hr Storm</th>
<th>Long-Term Average Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation (in)</td>
<td>0.91</td>
</tr>
<tr>
<td>Runoff Volume (ac-ft)</td>
<td>0.21</td>
</tr>
<tr>
<td>Percent of Runoff Volume Captured (%)</td>
<td>48</td>
</tr>
<tr>
<td>Total Volume Captured (ac-ft)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Market-Pine Alley
Green Street Project Concept

City of Redding
Stormwater Resource Plan

Geosyntec consultants

Santa Barbara | April 2018

Note: Proposed project is conceptual and subject to change based on future feasibility assessment, funding availability, and/or other information.